New advances on Photonanocatalysts for Renewable Energy

Christiane de Arruda Rodrigues

Universidade Federal de São Paulo – UNIFESP Instituto de Ciências Ambientais, Químicas e Farmacêuticas Rua São Nicolau, 210 - Diadema-SP, zip code: 09913-030, Brasil; phone. +55 (11) 4044-5000 R:3538 e-mail:chris.arruda72@gmail.com

Carbon dioxide (CO_2) is the main responsible for greenhouse effect. The global concentration of CO_2 in the atmosphere is increasing mainly due to the emissions from fossil fuel combustion. The reduction of CO_2 by photocatalysis is one of the most promising methods since CO₂ can be reduced to useful compounds by irradiating it with UV light at room temperature and ambient pressure. Several semiconductors, titled *p*-type, exhibit suitable band energies for photocatalytic reduction of carbon dioxide. Among various catalysts, copper oxides have properties that leads methanol and ethanol formation when applied in CO₂ reduction process and it can be used as an efficient sensitizer to couple with other wide band gap semiconductors, such as TiO_2 , to expand the photocatalytic application in the reduction experiments and to improve its absorbance in visible light. In this work will be presented different forms of preparation of nanocatalysts using TiO₂, copper oxides and ZnO, and their performances evaluated in the formation of chemical fuels by photoelectrocatalysis process. The electrodes were characterized by scanning electron microscopy with high resolution (SEM-FEG), X-ray diffraction (XRD), XPS, UV-Vis diffuse reflectance spectra (DRS) and photocurrents by linear voltammetry experiments in a solution containing 0,1 mol L^{-1} Na₂SO₄, with a potential range from -0.025 to -1.0 V vs. Ag/AgCl/Cl⁻ (3M). The formation of chemical fuels, such as methanol, ethanol, formic acid and acetone were identified by CG-MS and HPLC.

Acknowledgment

FAPESP, INCT-DATREM, CAPES and CNPq

Dopped TiO_2 (CuO / Cu₂O)

Modified TiO₂ (ZnO / CuO / Cu₂O)

TiO₂-CuO Equiatomic System

