Preferred presentation Type: Poster

Majorana bound states in a quantum dot device coupled with a superconductor zigzag chain.

A. T. M. Beirão ${ }^{1}$, M. S. Costa 2, A. de S. Oliveira ${ }^{4}$, S. J. dos S. da Silva ${ }^{3}$, J. J. da C. Cunha ${ }^{2,6}$, J. Del Nero ${ }^{5}$.
${ }^{1}$ Campus de Parauapebas, Universidade Federal Rural da Amazônia, Parauapebas, PA, Brazil.
${ }^{2}$ Pós-graduação em Física, Universidade Federal do Pará, Belém, PA, Brazil.
${ }^{3}$ Faculdade de Física, Universidade Federal do Pará, Ananindeua, PA, Brazil.
${ }^{4}$ Faculdade de Ciências Naturais, Universidade Federal do Pará, Cametá, PA, Brazil.
${ }^{5}$ Faculdade de Física, Universidade Federal do Pará, Belém, PA, Brazil. ${ }^{6}$ Faculdade de Matemática, Universidade Federal do Pará, Breves, PA, Brazil
E-mail: thiago.ppgee.ufpa@gmail.com

Abstract

: We investigate theoretically, through the recursive Green's function approach, the electron transport through the T-shaped quantum dot (QD) with a single level ε_{d} and spinless, connected to a zigzag chain and coupled to a p-wave superconductor [1]. This model (see Figure 1) is an extension of the Kitaev chain for a network triangular of finite-size with for three, four, and five sites. We find that the Majorana zero modes can be tuned through the coupling parameters of the device and the linear conductance show both the Majorana Bound States (MBS) in topological phase and in the general topological phase maximally robust. This more realistic model allows the detection of MBS through of the control of the parameters governing the electronic tunnelingand can be helpful for relevant experiments.

Figure 1. Model: consists of two leads in contact with a single level quantum dot (QD), coupled to a nanowire of zigzag atoms above a topological superconductor (TS) with p-wave pairing. In addition, $c_{2 i-1}$ e $c_{2 i}$ are Majorana modes that are in each site. The internal coupling constants in jail are given by $h_{\alpha}, \Delta_{\alpha}$, called hopping and Cooper parameter, respectively

References:

[1] A.T.M. Beirão et al., J. Comput. Electron, 17, 2018. Doi: 10.1007/s10825-018-1206-9
[2] H.U Baranger et al., Phys. Rev. B 84, 2011. Doi: 10.1103/PhysRevB.84.201308.

